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Abstract

Adipose/fat tissue provides an abundant source of stromal vascular fraction (SVF) cells for immediate administration
and can also give rise to a substantial number of cultured, multipotent adipose-derived stromal cells (ADSCs).
Recently, both SVF and ADSCs have gained wide-ranging translational significance in regenerative medicine. Initially
used for cosmetic breast enhancement, this mode of treatment has found use in many diseases involving immune
disorders, tissue degeneration, and ischaemic conditions. In this review, we try to address several important aspects
of this field, outlining the biology, technology, translation, and challenges related to SVF- and ADSC-based
therapies. Starting from the basics of SVF and ADSC isolation, we touch upon recently developed technologies,
addressing elements of novel methods and devices under development for point-of-care isolation of SVF.
Characterisation of SVF cells and ADSCs is also an evolving area and we look into unusual expression of CD34
antigen as an interesting marker for such purposes. Based on reports involving different cells of the SVF, we draw a
potential mode of action, focussing on angiogenesis since it involves multiple cells, unlike immunomodulation
which is governed predominantly by ADSCs. We have looked into the latest research, experimental therapies, and
clinical trials which are utilising SVF/ADSCs in conditions such as multiple sclerosis, Crohn’s disease, peripheral
neuropathy, osteoarthritis, diabetic foot ulcer, and so forth. However, problems have arisen with regards to the
lack of proper regulatory guidelines for such therapies and, since the introduction of US Food and Drug
Administration draft guidelines and the Reliable and Effective Growth for Regenerative Health Options that
Improve Wellness (REGROW) Act, the debate became more public with regards to safe and efficacious use of
these cells.
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devices, CD34, Regulation of stem cell therapeutics

Background
Adipose-derived stem/stromal cells (ADSCs) were first
characterised in 2001, and have since been widely
studied and used as a major source of cells with regene-
rative potential, with characteristics similar to that of
mesenchymal stem/stromal cells (MSCs) [1–4]. ADSCs
are isolated as part of the aqueous fraction derived
from enzymatic digestion of lipoaspirate (the product of
liposuction). This aqueous fraction, a combination of
ADSCs, endothelial precursor cells (EPCs), endothelial cells

(ECs), macrophages, smooth muscle cells, lymphocytes,
pericytes, and pre-adipocytes among others, is what is
known as the stromal vascular fraction (SVF).
ADSCs, like MSCs, have shown promise in regenera-

tive and reconstructive medicine [5–8]. Recent advances
in the area of tissue regeneration have put SVF on a par
and at times even above ADSCs [9–17]. For instance, in
a study of erectile function in a rat model of cavernous
nerve injury, SVF treatment showed superior statistically
significant results compared to ADSC treatment alone,
especially in smooth muscle/collagen ratio and in endo-
thelial cell content [12]. The advantage of SVF over
ADSCs is believed to be in two fundamental areas.
Firstly, although similar in properties such as
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immunomodulation, anti-inflammatory, angiogenesis,
and so forth, the distinctive, heterogeneous cellular com-
position of SVF may be responsible for the better thera-
peutic outcome observed in comparative animal studies
[9–12]. Secondly, unlike ADSCs, SVF is much more eas-
ily acquired, without the need for any cell separation or
culturing conditions. Thus, the therapeutic cellular prod-
uct is instantaneously obtained and has minimal contact
with reagents making it comparatively safer and subject
to the fulfilment of lesser regulatory criteria. It should be
noted that, whereas ADSCs find utility in both allogeneic
and autologous treatments, SVF, owing to the presence
of various cell types known to cause immunological re-
jection, is suitable for autologous treatments only.
Although almost all ADSCs are derived from the white

adipose tissue (WAT), as covered in this review, the
identification of progenitor cells in brown adipose tissue
(BAT) of adult humans is fascinating and worth a mention
[18, 19]. Termed as BADSCs (brown adipose-derived stem
cells), these have been isolated from BAT deposits present
in relatively inaccessible regions such as the mediastinum,
and are capable of differentiating to metabolically active
BA cells with differences in surface antigen expression as
compared to WAT-originating ADSCs [18]. Current un-
derstanding of WAT and BAT define these cells with dis-
tinct functionalities, and thus translational avenues for
ADSCs from either source should be compared to identify
specific therapeutic targets and potential advantage of one
over the other. Understanding of the molecular mecha-
nisms behind either cell fate and the possibility of inter-
conversion are interesting avenues of research with basic
and translational implications [20, 21].
Despite the potential of SVF in regenerative medicine

there are challenges to overcome. First is isolation of
SVF, which needs a specialised infrastructure such as a
clean room facility, equipment, reagents, and technical
capabilities. These conditions limit the reach of SVF to
only major hospitals in tier 1/2 cities, especially in a
country such as India. In this regard, the up and coming
point-of-care biomedical devices which can take lipoas-
pirate as their input and produce sterile, injectable SVF
as output will be beneficial. Secondly, the method of iso-
lating SVF is a vital roadblock in the approved use of
SVF for therapeutic applications. Digestion of lipoaspi-
rate is achieved by collagenase, and the presence of col-
lagenase in the injectable product does not bode well
with regulatory authorities such as the US Food and
Drug Administration (FDA) [3]. Consequently, alternative
methods are being explored with some encouraging out-
comes [22–25]. Finally, characterisation of the regenerative
cells of SVF has not reached a wide consensus. Organisa-
tions such as the International Federation for Adipose
Therapeutics and Science (IFATS) and the International
Society of Cellular Therapy (ISCT) have been updating the

surface antigen-based definition of SVF cells, where CD34
antigen, primarily associated with haematopoietic stem
cells (HSCs), became an important marker of regenerative,
MSC-like cells of the SVF [1, 26, 27].
In this review, using the broader topics of isolation

and characterisation of SVF, we will touch upon some of
the challenges and innovations in the field and comment
upon the future of SVF.

Isolation of SVF
Enzymatic isolation of SVF
The most widely used technique for the isolation of SVF
from lipoaspirate is by digestion of the fatty portion of the
lipoaspirate with collagenase, separating the contents into
two distinct phases: the floating mature adipocytes fraction,
and the cellular components of interest in the lower aque-
ous fraction [17, 28]. This separation can be enhanced by
centrifugation; nevertheless, comparable separation can be
achieved by gravity-based phase separation and filtration
[29]. Although centrifugation is more efficient, it will also
pellet down all the cells present, while filtration can be de-
signed to capture only the important cell types based on
size, thus enriching the specific cellular cocktail.
Centrifugation of the aqueous fraction yields a reddish

pellet which contains SVF cells. Erythrocytes, a major
contaminant present in the SVF pellet, can be lysed to
isolate a purer population of ADSCs and/or SVF cells if
intended for in vitro expansion [7, 30].

Non-enzymatic isolation of SVF
In view of the regulatory questions relating to enzymatic
isolation, it is important to look into alternative methods
for isolating SVF and compare these with the conven-
tional methods [3, 24, 25]. Most of these techniques in-
volve mechanical agitation which breaks down the
adipose tissue and releases the stromal cells. As ex-
pected, the cellular yield from mechanical procedures
are much lower compared to enzymatic methods, as
cells of the adipose tissue tightly bound by collagen will
not be easily released by mechanical action alone [24].
A novel method of mechanical agitation was recently

defined by Tonnard et al. [23]. The injectable product,
termed as “nanofat”, was obtained by emulsification and
filtration of the lipoaspirate. Although termed as nanofat
grafting, in effect no viable adipose cells survived the
emulsification process, but the graft was rich in CD34+

ADSCs. The efficacy and properties of nanofat have been
demonstrated in multiple case studies related to skin
rejuvenation, scar healing, skin grafting for wound man-
agement, and treating vulvar lichen sclerosus (VLS), a
chronic inflammatory disease of the anogenital area, and
also by standard ADSC-related phenotypic and differen-
tiation studies [23, 31, 32]. Owing to the simplicity of
the technique, it might be amenable to scaling up by
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simply using the desired volume of syringe and/or using
multiple syringes as required.
The effect of the emulsification process on other cells of

interest, normally found in enzymatically processed SVF, re-
mains to be seen. Combining such techniques with centri-
fugation or filtration can yield products highly concentrated
with ADSCs, thus eliminating enzymatic digestion, reducing
process time, cost, and respective regulatory constraints.

Automated devices for point-of-care isolation of SVF
The infrastructure, expertise, and consumables required
for the conventional method of SVF isolation is not
commonplace in most health-care facilities. Cosmetic
surgery, being at the upper-end of medical expenditure,
is the largest consumer of SVF and related products, but
the actual scope is much wider [3]. Thus, it is unfortu-
nate that the benefits of this very simple technology have
not reached full potential. This gap can be overcome by
automated, point-of-care biomedical devices, which can
produce injectable SVF from lipoaspirate.
Such developments have been underway for quite

some time, although mostly still in trial stages, with
Cytori’s (San Diego, USA) Celution® being the first sys-
tem [33]. Currently, about 30 different automated and
semi-automated systems are under development [22].
The technologies and methodologies used vary, with
most opting for the tried and tested enzymatic process.
Stempeutics (Bangalore, India) has developed one such
system, Stempeutron™, the proof-of-concept of which
was reported in SundarRaj et al. [29]. Stempeutron™ uses
the more efficient and conventional enzymatic digestion
method and gravity-enabled separation of fatty and
aqueous fraction followed by filtration of the aqueous
fraction to achieve SVF isolation and concentration.
Since Stempeutron™ uses filtration we wanted to know

the physical dimensions of SVF cells. As such, a list of cell
sizes was not found while searching through the literature
for this review and we resorted to mining for individual

reports of cell size, surface area, and volume measure-
ments. Table 1 summarises available cell diameter informa-
tion accumulated from various reports [34–45]. The
filtration system in Stempeutron™ is capable of captur-
ing the majority of the therapeutically important cell
types (Table 1) [3, 29]. Future developments might
enable size-based enrichment of specific cellular pop-
ulations, targeted towards specific diseases.

Characterisation of SVF
Criteria for characterising the cellular contents of SVF
using surface antigen (cluster of differentiation (CD))
combinations is an evolving area of research as, within
certain generally accepted norms, it differs between la-
boratories. A list of commonly used positive and nega-
tive markers identifying different cellular populations of
SVF is provided in Table 1 [1, 26, 29]. Considering the
variables present in isolation of SVF, such as the age of
the patient, downstream processing, and so forth, the di-
versity observed between samples is quite understand-
able. However, if there is a relationship between the
different ratios of cellular components present in SVF
with its efficacy towards specific ailments, one might be
able to come up with an optimum composition corre-
sponding to the highest therapeutic efficacy. Traktuev et
al. demonstrated that certain factors produced by
ADSCs such as vascular endothelial growth factor
(VEGF) help in migration, and that better survival of
EPCs and correspondingly platelet-derived growth fac-
tors (PDGF)-BB produced by EPCs enable ADSCs to
proliferate and migrate [46, 47]. They also provide proof
of physical interaction between ADSCs and ECs in
which ECs form a stable tubular, vasculature-like struc-
ture with support from ADSCs, both in vitro and in vivo
[47]. This information along with some other articles
has been used to draw up a schematic in Fig. 1 for the
action of SVF, focussing on the interaction between
ADSCs and EPCs [46–49].

Table 1 Important components of SVF, respective sizes, and surface markers
Cell types of the SVF Cell size range [in µm]* Molecular markers# [1, 26, 29]

Positive Negative

ADSC ~10–25 μm and reported up to 200+ μm in culture [34–36] CD34, CD73, CD13, CD90, CD105, CD29 CD31, CD45, CD144

EPC ~7–8 μm (smallest defined) [37] CD34, CD31, CD133, CD146 CD45

EC ~10–30 μm [38] CD31, FVIII CD34

T regulatory cells ~7–12 μm [39, 40] CD4, CD25, Foxp3, CD8 –

Macrophages ~20 μm [41] CD45, CD14, CD34, CD206 –

Smooth muscle cells ~3–20 μm in width and 20–500 μm in length [42, 43] Smooth muscle actin (SMA) –

Pericytes Up to ~70 μm in length [44] CD146, CD90, CD73, CD44, CD29, CD13 CD34, CD45, CD56

Pre-adipocytes ~10 μm [45] CD34 CD45, CD31, CD146

*Diameter; unless mentioned otherwise
The Table captures the approximate range of cell sizes as reported in different studies [34–45] and provides an overview of surface antigens for the
respective cell type [1, 26, 29]. # Includes surface or CD markers, cytoplasmic and nuclear factors
ADSC adipose-derived stem/stromal cells, EC endothelial cells, EPC endothelial precursor cells, SVF stromal vascular fraction

Bora and Majumdar Stem Cell Research & Therapy  (2017) 8:145 Page 3 of 10



ADSCs in SVF are currently defined to be positive for
classical MSC markers such as CD73 and CD90, and ex-
press CD34 but not the pan-haematopoietic lineage

marker CD45. CD34 is expressed by progenitors of
haematopoietic and endothelial lineages as well, and in
ADSCs it is expressed transiently up to about 8–12

Fig. 1 Potential mechanism of action of ADSCs and ECs present in SVF towards angiogenesis. Breakdown of adipose tissue releases many cell
types, which together are termed SVF. The cells of the SVF can produce several bioactive soluble factors. ADSCs and EPCs, two important components
of SVF, cross-talk via VEGF and PDGF-BB, respectively (among other components), to enable cell proliferation, homing towards injury, neovascularisation
and other inter-connected outcomes. ADSC adipose-derived stromal cell, bFGF basic fibroblast growth factor, EC endothelial cell, EPC endothelial
progenitor cell, GF growth factor, IGF-1 insulin-like growth factor-1, MMP matrix metalloproteinase, PDGF platelet-derived growth factor, RBC red blood
cell, SVF stromal vascular fraction, VEGF vascular endothelial growth factor
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population doublings in culture [1].The case of CD34 is
interesting since it is still largely considered to be a
marker for HSCs owing to its historical association with
the enrichment of such cells for bone marrow and um-
bilical cord blood transplantation. Even the pericytic the-
ory related to MSCs and ADSCs has two sides [50];
whereas Crisen et al. attribute CD34– pericytes to be the
progenitors of such stromal cells [51], Traktuev et al.
demonstrated a CD34+ pericytic identity for ADSCs
[46]. Maumus et al. tried to investigate this further but
found that native CD34+ ADSCs did not exhibit in vivo
pericytic markers, but they were rather observed over
the course of the culture process [52]. Our data also
show that both manually isolated and Stempeutron™-iso-
lated SVF contains a CD146+ pericytic population that
are mostly (>90%) CD34– [29], suggesting that freshly
isolated SVF contains a pericytic population devoid of
expressing both CD34 and CD31 markers. Whether the
CD146+ cells observed within the SVF population subse-
quently become CD34+ ADSCs remains to be determined.
Considerable evidence also exists in favour of CD34 ex-
pression in bone marrow-derived MSCs (BMMSCs), espe-
cially in the early stages of BMMSC research which
included data on the disappearance of CD34 upon cul-
turing [53]. Many aspects of this puzzle are yet to be
solved, but it is probable that CD34 marks different
progenitor cell types such as different MSCs and vascu-
lar endothelial progenitor cells.
In the course of preparing this review, it was also ob-

served that reports of ADSC function and physiology in
vitro is minimal and in vivo and/or in the native state is
rare and in need of further investigation. Table 2 sum-
marises the observations about the characteristics of
ADSCs in situ, in vivo, and in vitro that has been dis-
cussed within the review [1, 34–36, 46, 47, 52].

The curious case of CD34
ADSC research, being predominantly carried out using
culture-expanded cells, has led to rather recent accept-
ance of CD34 as a marker for freshly isolated and native
ADSCs. Thus, there remain interesting aspects of CD34

biology to be explored and understood. Firstly, CD34
expression has been associated with “stemness” in
various systems including human ADSCs. A report by
Suga et al. implied association of CD34 expression with
naivety, angiogenic gene expression, and greater replica-
tive capacity [54]. Similar to HSCs, reversal of CD34 ex-
pression has also been observed in MSCs with a change
in culture conditions, thus hinting that CD34 expression
might be reversible [53, 54]. Maumus et al. demon-
strated an inverse relationship between CD34 expression
and in vitro expansion of ADSCs and provided evidence
for CD34 being a niche-specific marker of human ADSCs
[52]. Interestingly, they commented on the morphological
features of ADSCs in vivo, that is having up to 80-μm long
protrusions, capable of forming networks surrounding
mature adipocytes; however, the scientific and anatomical
reason for these structural features are poorly understood.
Taking these into account has led to speculation that
CD34 is a physiological niche-specific marker of imma-
ture/early progenitor cells which is lost in in-vitro condi-
tions [52–56]. Scherberich et al. review CD34 biology in
general and with regards to ADSCs in detail [56].
The second interesting aspect is the relationship

between CD34 and hypoxia. Since CD34 might be a
niche-specific marker of progenitors, it can be specu-
lated that hypoxic conditions might have something to
do with its expression. Hypoxia is related to mainten-
ance of adult stem cells such as those in bone marrow
and neural stem cells [57]. In MSCs, and also recently in
ADSCs, hypoxic pre-conditioning/culturing has shown
improved results with regards to proliferation, retention
of transplant, angiogenesis, and modulation of angio-
genic factors such as VEGF and interleukin (IL)-6,
homing, and mobilisation-related characteristics of MSCs/
ADSCs, and so forth [58–63]. It is important to note that
the ADSC study specifically selected for CD34– cells to
begin with and subsequently did not find any significant
expression of CD34 in their hypoxically cultured cells [63].
On the other hand, there was a study which speculated
that the CD34 gene might be transcriptionally regulated
by hypoxia inducible factor 1 (HIF1). The researchers

Table 2 Overview of characteristics of native and culture expanded ADSCs

Factors Native ADSCs [52] Culture-expanded ADSCs [1, 34–36, 46, 47, 52]

Cell surface markers CD34, CD73, CD90, CD13 CD73, CD90, CD13; (CD34 expression decreases
and ceases with in vitro expansion)

Morphology Branched, with up to 80-μm long protrusions
forming a network surrounding mature adipocytes

Typical elongated, stromal cell shape, ~10–25 μm
and reported to go up to 200 + μm

Location Both perivascular and stromal positions in situ Not applicable

Functional characteristics • Support adipose tissue growth.
• Might differentiate to form mature adipocytes

• Facilitate and/or participate in angiogenesis.
• Potential for differentiation to adipo-, osteo-,
and chondrogenic lineages. • Immunomodulatory properties.

This table summarises important characteristics and differences between native and culture expanded ADSCs [1, 34–36, 46, 47, 52]
ADSC adipose-derived stem/stromal cell
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observed that the concentration of oxygen in culture
not only influenced the expression of CD34 but also
that better maintenance of the antigen corresponded
with more undifferentiated cells, which led them to
hypothesise that CD34 and hypoxia play an important
and inter-related function in maintenance of primitive
stem cells of cord blood [64].
Such observations give a certain level of enigma; clearly

CD34 and hypoxia are important factors in the mainten-
ance of “stemness”, and it is also likely that CD34 expres-
sion is somehow related to hypoxic conditions in different
stem or progenitor cell types. However, such a connection
remains to be mechanistically studied in human ADSCs,
or any other kind of MSCs for that matter. Such studies
might provide evidence connecting CD34 with more
naive/primitive stem cells, maintained in a hypoxic niche.

Current state in the clinic and laboratory
The first clinical applications of SVF were reported around
2007 to 2008 for cosmetic breast augmentation and also
in the treatment of radiation injury post-radiotherapy in
breast cancer patients [14, 65]. The Yoshimura group
coined the term CAL, or cell-assisted lipotransfer, in 2008,
where they enhanced fat grafts with SVF, demonstrating
improved graft retention [14, 17]. Since these two early
clinical reports from the last decade, there has been a
many-fold increase in basic research and, consequently,
many clinical trials are also now underway.
Searching www.ClinicalTrials.gov with keywords such

as “SVF”, “Stromal vascular fraction”, “ADSC”, “Adipose
stem cells”, and so forth, provides many hits. Although
most of those studies are underway or recruiting at the
time of this communication, interest has been rising
with time. What is truly exciting is the breadth of condi-
tions being targeted by SVF and ADSCs. Despite having
properties like MSCs, the use of culture-expanded
ADSCs has not reached similar consensus for allogeneic
applications. However, ADSCs and SVF have been the
preferred regenerative tools for use in autologous appli-
cations, and some of the major ones (along with case
study references and/or ClinicalTrials.gov identification
number) are listed in Table 3 [10, 14, 16, 23, 30, 31, 65–76].
Some other major ailments covered are pulmonary dis-
eases, arterial and vascular diseases, graft versus host dis-
ease, Crohn’s disease, peripheral nerve regeneration, and so
forth. Clinical areas where SVF and ADSCs are used do
overlap to a substantial extent. Nevertheless, there are
understandable differences between the two, but the few
comparative pre-clinical and clinical studies available do
not reach a unanimous conclusion. However, to summarise
where the field stands as of now, a comparative overview of
both modes with a few examples favouring either option is
provided in Table 4 [9, 11, 12, 77].

A superficial glance at the treatments highlights the
two most preferred pathways, that is employing the vas-
culogenic and the immunomodulatory properties. We
are yet to fully explore the multipotent properties of
SVF cells which will only increase the breadth of their
application. One recent example of enhanced osteoin-
duction by using SVF for dental implant surgery in hu-
man subjects provides encouraging results, wherein
researchers found bone formation on implanting artifi-
cial graft material with SVF supplement compared to the
graft alone [66]. The use of matrices/scaffolds and
populating those with SVF and/or ADSCs is a promising
area of application, though still in experimental phases
[13, 78, 79]. Here, we will not go into much detail re-
garding the applications as that has been well accom-
plished in a recent two-part review [3, 26].

“Fat stem cell” therapies and regulatory scenario
Clinics all across the globe began providing “fat stem
cell”-based therapy shortly after its discovery, promising
miraculous results and more, but often running into
controversies [80–86]. Such therapies in the US are
known to charge anywhere from USD5000 to
USD100,000, and, although mostly harmless and some-
times beneficial, there have been reports of vision loss,
tumours, and even deaths [80–86]. Being a major issue
in the USA, the FDA had to step in with a draft guideline
late in 2014 [87]. These guidelines can be considered in
future development of technologies and procedures re-
lated to SVF and therapies. Although the “stem cell
therapy” genre includes many types of stem cells, ADSCs
remain the most marketed variety in the US [88].
The common practices of enzymatic and mechanical

disruption of adipose tissue for isolating SVF are expli-
citly mentioned in the FDA document as “more than
minimal manipulation” [87]. As and when the guidelines
are implemented, SVF isolated by current protocols
(enzymatic digestion) can be treated as a Category 351
product, that is a “drug/biologic” and in need of
complete FDA regulation [68]. This calls for explor-
ation of alternate methods, keeping in mind that regula-
tions in the US often trickle down to other geographies,
especially in matters of food and drugs.
Introduction of the Reliable and Effective Growth for

Regenerative Health Options that Improve Wellness
(REGROW) Act [89] in the US Senate last year led to
scientific and policy debate, with prominent organisa-
tions such as the ISCT, the International Society for
Stem Cell Research (ISSCR), and many patient and ad-
vocacy groups refusing to support it, at least in its
current form [88, 90–94]. The REGROW Act aims to
hasten the “conditional approval” of certain cell and tis-
sue therapeutic products which demonstrate “reasonable
expectation of effectiveness” along with a few other
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criteria [89]. However, the use of open-ended terms such
as “reasonable expectation of effectiveness” amounts to a
lack of clear scientific definition, thus leaving scope for
interpretation of the law, consequently leading to poten-
tial abuse; such concerns are possibly behind this strong
opposition towards the act.
Nevertheless, an urgent consensus is required among all

stakeholders with regards to realising the translational
potential of stem cells and other cell-based therapeutics,
especially when it comes to serious unmet medical needs.

Conclusions
MSCs have been long known for their remarkable
properties when it comes to regeneration and thera-
peutic potential. ADSCs are possibly the easiest to

isolate among all the different types of MSCs in an
adult human and in relative abundance too; up to 500
times more stem/stromal cells per gram as compared
to a bone marrow source [95]. Simply put, ADSCs are
potentially the most abundant regenerative cells in the
human body and SVF is a step in the protocol to isolate
ADSCs. As has been repeatedly mentioned in this re-
view, the potential for use of both SVF and ADSCs in
regenerative medicine are immense. However, care
must be taken to go about it without harming the
intended beneficiary, that is the patients and public in
general. Guidelines, such as the ones from US FDA and
their counterparts elsewhere will be important parame-
ters in judging new therapies and technologies being
developed, and we ought to keep abreast of such issues.

Table 4 Comparative overview of SVF and ADSCs

Factors SVF ADSCs

Cell population Heterogeneous Homogeneous

Cell type ADSC, EC, EPC, etc. ADSC only

Application range Autologous Autologous & allogeneic

Immune rejection Not anticipated Immune monitoring required

Properties Angiogenic, immunomodulatory,
and differentiative

Immunomodulatory and differentiative

Ex vivo exposure Low (hours) High (weeks)

Documented advantage in application Acute myocardial infarction [9]
Chronic experimental autoimmune
encephalomyelitis [11] Erectile dysfunction
in rat model of cavernous nerve injury [12]

Hypertrophic scars [77]

This table provides a comparative overview of ADSCs and SVF with respect to various criteria and lists a few studies which observe advantage of one over the
other [9, 11, 12, 77]
ADSC adipose-derived stem/stromal cell, EC endothelial cell, EPC endothelial precursor cell, SVF stromal vascular fraction

Table 3 Major applications of SVF- and ADSC-based therapeutics with corresponding clinical trials and/or case study references

Indications Clinical trials (www.ClinicalTrials.gov) Case studies and other references

Cosmetic applications Breast augmentation NCT02116933 [14, 16, 30, 65, 68, 69]

General scar, burn and wounds,
facial rejuvenation, reconstruction

None found [10, 23, 65, 70, 71]

Androgenic alopecia NCT02594046 None found

Disease conditions Vulvar lichen sclerosus None found [31]

Erectile dysfunction NCT02414308, NCT01601353, NCT02087397 [67]

Peyronie’s disease NCT02414308 None found

Urinary incontinence NCT01799694, NCT01850342 None found

Faecal incontinence NCT02292628, NCT01011686 None found

Anal fistula None found [72]

Multiple Sclerosis None found [73]

Critical limb ischaemia None found [74, 75]

Diabetic foot ulcer NCT02394886, NCT02092870 None found

Osteoarthritis NCT02326961 (Using Celution system) [76]

This Table provides an overview of major ailments in which ADSCs and SVF are being used therapeutically, with references of case studies and listed clinical trials
within www.ClinicalTrials.gov [10, 14, 16, 23, 30, 31, 65–76]
For certain indications, either ClinicalTrial.gov or published cases were not found while preparing this manuscript; this may change in the future
ADSC adipose-derived stem/stromal cell, SVF stromal vascular fraction
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Technology development is the single most important
factor to realise the full potential of any new therapy,
and SVF-based therapy is no exception. At the same
time, it is evident that we need a better understanding
of SVF and ADSC biology. This is a continuous endeavour
and will only help to better establish the core principles
and mechanisms of SVF- and ADSC-based therapies. In
the process, we are likely to discover newer applications
apart from the plethora already identified. Combining
these therapies with other technologies such as decellu-
larised or three-dimensional printed scaffolds with the
aim of transplantation will jump-start other areas of
clinical and commercial developments.
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